Search results for "background: induced"

showing 4 items of 4 documents

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at E beam =4 TeV

2018

Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the FLUKA Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared qua…

background [beam]background: inducedPhysics::Instrumentation and DetectorsCiencias FísicasMonte Carlo method01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysik//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)beam lossesSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]and programsInstrumentationQCMathematical PhysicsPhysicsLarge Hadron ColliderRadiation calculationsAtlas (topology)Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)DetectorATLAS experimentSettore FIS/01 - Fisica SperimentaleSimulation methods and programBeams (radiation) Accelerator modelling and simulations (multi-particle dynamics;; single-particle dynamics); Radiation calculations; Simulation methods; and programs; DETECTOR; SEARCHObservableAccelerator modelling and simulations (multi-particle dynamicMonte Carlo [numerical calculations]ATLASNuclear & Particles PhysicsAccelerator modelling and simulationsCERN LHC Coll collimators beam: backgroundcolliding beams [p p]numerical calculations: Monte CarloCIENCIAS NATURALES Y EXACTASParticle Physics - Experimentp p: scatteringAccelerator modelling and simulations (multi-particle dynamics; Radiation calculations; Simulation methods and programs; single-particle dynamics); Instrumentation; Mathematical Physics530 PhysicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesFísica de Partículas y CamposAccelerator Physics and InstrumentationNuclear physicsFLUKAsingle-particle dynamics)ATLAS LHC High Energy PhysicsHIGH ENERGY PHYSICSSEARCH0103 physical sciencesddc:610010306 general physicsAbsolute scaleDETECTORpressure [gas]Science & Technology010308 nuclear & particles physicsScatteringhep-exRadiation calculationscatteringAcceleratorfysik och instrumentering//purl.org/becyt/ford/1.3 [https]ghostAccelerator modelling and simulations (multi-particle dynamicsSimulation methodscorrelationinduced [background]Experimental High Energy Physicsgas: pressureSimulation methods and programsp p: colliding beamsexperimental results
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct

A detector for CLIC: main parameters and performance

2019

Together with the recent CLIC detector model CLICdet a new software suite was introduced for the simulation and reconstruction of events in this detector. This note gives a brief introduction to CLICdet and describes the CLIC experimental conditions at 380 GeV and 3 TeV, including beam-induced backgrounds. The simulation and reconstruction tools are introduced, and the physics performance obtained is described in terms of single particles, particles in jets, jet energy resolution and flavour tagging. The performance of the very forward electromagnetic calorimeters is also discussed.

Physics - Instrumentation and Detectorsbackground: inducedFOS: Physical sciencesjet: energy resolutionInstrumentation and Detectors (physics.ins-det)Advanced software [3]Accelerators and Storage RingsprogrammingHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)calorimeter: electromagneticCERN CLIC[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Accelerator PhysicsHigh Energy Physics::Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]numerical calculationsdetector: designperformance
researchProduct